On the wavelet-Galerkin method with Deslauriers-Dubuc interpolating scaling functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deslauriers-dubuc: Ten Years After

Ten years ago, Deslauriers and Dubuc introduced a process for interpolating data observed at the integers, producing a smooth function deened on the real line. In this note we point out that their idea admits many fruitful generalizations including: Interpolation of other linear functionals of f (not just point values), yielding other reenement schemes and biorthogonal wavelet transforms; Inter...

متن کامل

On the norms of the Dubuc-Deslauriers subdivision schemes

Conti et al. (2012, Remark 3.4) conjecture that the norm of the interpolatory 2n-point Dubuc–Deslauriers subdivision scheme is bounded from above by 4 for any n ∈ N. We disprove their conjecture by showing that the norm grows logarithmically in n and therefore diverges as n increases.

متن کامل

Symmetric Interpolating Scaling Functions

In many applications, wavelets are usually expected to have the following properties: compact support, orthogonality, linear-phase, regularity, and interpolation. To construct such wavelets, it is crucial designing scaling functions with the above properties. In twoand three-band cases, except for the Haar functions, there exists no scaling function with the above five properties. In -band case...

متن کامل

Interpolatory blending net subdivision schemes of Dubuc-Deslauriers type

Net subdivision schemes recursively refine nets of univariate continuous functions defined on the lines of planar grids, and generate as limits bivariate continuous functions. In this paper a family of interpolatory net subdivision schemes related to the family of Dubuc-Deslauriers interpolatory subdivision schemes is constructed and analyzed. The construction is based on Gordon blending interp...

متن کامل

Galerkin and Collocation Methods for the Solution of Kelin-Gordon Equation Using Interpolating Scaling Functions

Abstract: A numerical technique is presented for the solution of Klein-Gordon equation. This method uses interpolating scaling functions. The method consists of expanding the required approximate solution as the elements of interpolating scaling functions. Using the operational matrix of derivatives, we reduce the problem to a set of algebraic equations. Some numerical examples are included to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 2013

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1389972032